\[t_0 = \sqrt{20} \left(\frac{65 - 68}{13} \right) = -1.032 \]

\[df = 12, \ \text{lookup} \ 1.082 \]

For a one-tailed test,

This value, \(t_{0.15} \), is between 0.873, which corresponds to \(t_{0.15} \) and 1.603.

Although \(t_{1.083} \) which corresponds to 0.20.

Since this is a two-tailed test (+), we double (multiply by 2) to get these \(p \)-values.

\(2(0.15) = 0.30 \) and \(2(0.20) = 0.40 \)

So \(0.30 \leq p\text{-value} \leq 0.40 \)

\(p\text{-value} \geq 0.30 > 0.05 \)

Don't reject \(H_0 \)
There is not enough evidence to support the claim that the average test scores (final exam) score differs from previous classes.

22)
 a) Skewed Right. Notice the outliers on the right end
 b) Median, \text{IQR} since it is not normal