Chapter 10: Antimicrobial Drugs

1. Overview of Antimicrobial Drugs
2. Antibacterial Drugs
3. Antiviral Drugs
4. Drugs for Eukaryotic Pathogens

1. Overview of Antimicrobial Drugs

Chapter Reading – pp. 289-291

Antibiotics

An antibiotic is technically a substance produced by a microorganism to inhibit or kill other microorganisms:

- e.g., the mold Penicillium chrysogenum produces penicillin which kills Gram+ bacteria

In practice, though, the term antibiotic is used to refer to any substance, natural or synthetic, that inhibits or kills microorganisms:

- when used therapeutically, antibiotics are antimicrobial drugs!
Selective Toxicity
For an antimicrobial drug to be effective, it must have selective toxicity, i.e., it must cause significantly greater harm to the pathogen than to the host being treated:

- this requires the targeting of features of the pathogen that differ from the host's cells
- bacteria have several such targets such as the cell wall & ribosomes
- viruses and eukaryotic pathogens are much more challenging to treat since they have less features that can be safely targeted

Efficacy vs Toxicity

\[
\text{Chemotherapeutic index} = \frac{\text{Toxic dose}}{\text{Therapeutic dose}}
\]

- the higher the chemotherapeutic index, the safer the drug...

Spectrum of Action
The range of pathogens targeted by a specific antibiotic is referred to as its spectrum, which can be “broad” or “narrow”:

Broad-spectrum antibiotics
- usually refers to drugs effective against more than one general category of pathogens
- e.g., Gram- & Gram+ bacteria

Narrow-spectrum antibiotics
- usually refers to drugs effective against only one general category of pathogens
- e.g., Gram+ bacteria, or mycobacteria
Prokaryotes

Mycobacteria
Gram-positive bacteria
Chlamydias, rickettsias

Gram-negative bacteria

Examples of Spectrum of Action (pp. 298-299)

Eukaryotes
Protozoa
Fungi
Helminths

Vesicles

Examples of Spectrum of Action (pp. 298-299) Table

<table>
<thead>
<tr>
<th>Prokaryotes</th>
<th>Eukaryotes</th>
<th>Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacteria</td>
<td>Gram-negative bacteria</td>
<td>Gram-positive bacteria</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>Polymyxin</td>
<td>Vesicles</td>
</tr>
<tr>
<td>Penicillin</td>
<td>Streptomycin</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Tetracycline</td>
<td></td>
</tr>
</tbody>
</table>

• e.g., isoniazid & polymyxin are "narrow spectrum", tetracycline & erythromycin are "broad spectrum"
 • broad spectrum drugs are not necessarily preferable due to their effects on the normal microbiota

Antimicrobial Drug Resistance (pp. 302-306)

The introduction of an antibiotic into the microbial environment is a selective factor that over time can select for resistant pathogens.

The main ways to minimize this problem are:

1) administer the antibiotic at the prescribed dose for the prescribed duration
 • premature stoppage allows the more resistant pathogens to survive

2) use of antimicrobial drugs in combination
 • much lower odds of resistance to multiple antibiotics

How is Resistance Obtained?

Resistance to an antibiotic is generally obtained by the acquisition of antibiotic resistance genes:

e.g., transformation, conjugation, transduction, or a fortuitous mutation

Resistance genes can be of several types:

• enzymes that degrade the antibiotic
• efflux pumps that rapidly expel the antibiotic
• changes in membrane proteins that limit entry of antibiotic
• molecular changes which prevent binding of the antibiotic to the target site
Inhibition of cell wall synthesis
Inhibition of pathogen’s attachment to, or recognition of, host
Inhibition of protein synthesis
Disruption of membranes
Inhibition of DNA or RNA synthesis
Inhibition of general metabolic pathways

Antimicrobial Targets
A variety of unique microbial features can be targeted by antibiotics w/o harming host cells:

1) cell walls of bacteria, fungi
 • peptidoglycan & outer membrane, chitin (fungi)
2) protein synthesis (prokaryotic ribosomes)
3) unique features of bacterial, fungal membranes
4) nucleic acid synthesis
 • unique features of prokaryotic, viral DNA/RNA polymerases
5) metabolic pathways not found in host
6) attachment to host cells (by viruses mainly)

Antimicrobial Testing (pp. 299-300)
Kirby-Bauer test
• antibiotic discs placed on lawn of bacteria on special agar
• zone of inhibition size indicates susceptibility or resistance (based on chart)

Etest
• strip with antibiotic gradient on agar reveals minimum inhibitory concentration (MIC)
2. *Antibacterial Drugs*

Chapter Reading – pp. 291-296
Drugs that Target the Cell Wall

Inhibitors of peptidoglycan synthesis:

Penicillin & its derivatives
- over 50 related compounds
- some are natural, some are semisynthetic
- all penicillin-based compounds have this same core structure
- prevent cross-linking of carbohydrate & peptide components of peptidoglycan

more effective against Gram+ bacteria (no outer membrane)

Some Penicillin Derivatives

Natural
- produced by fungi
- narrow spectrum
- subject to degradation

Semisynthetic
- side chain only is synthetic
- broader spectrum
- resistant to degradation

Effects of Penicillin

- penetrates cells (mostly Gram+) and interferes with peptidoglycan synthesis
- without an intact peptidoglycan layer, bacterial cells are prone to lysis by osmosis
Microbial Defenses to Penicillin

- some bacteria can avoid the effects of penicillin by the production of β-lactamases (e.g., penicillinase), enzymes that break the β-lactam ring
- many semisynthetic derivatives such as Oxacillin are resistant to penicillinases

Other Peptidoglycan Inhibitors

Cephalosporin & its derivatives (over 70!)
- inhibits peptidoglycan synthesis much like penicillin
- resistant to penicillinases
- vulnerable to cleavage by a similar yet distinct class of enzymes

Vancomycin & Bacitracin
- polypeptides that inhibit peptidoglycan synthesis in a different manner

Drugs that Target Protein Synthesis

Bacterial ribosomes are slightly smaller than eukaryotic ribosomes and have enough structural differences to make them good targets for antibiotics

- Tetracyclines – block binding of tRNAs to ribosome
- Chloramphenicol – blocks peptide bond formation
- Aminoglycosides – disrupt “reading” of mRNA
Specific Targets of Protein Synthesis

Inhibitors of Nucleic Acid Synthesis

Rifamycins
- e.g., rifampicin
- inhibit bacterial transcription (mRNA synthesis)
- penetrate host cells well, effective against intracellular bacteria such as Mycobacteria

Quinolones
- e.g., ciprofloxacin
- inhibit the bacterial DNA gyrase - DNA replication
- broad spectrum antibiotic, more effective against Gram+ bacteria

Drugs that target Membranes

Polymyxin
- disrupt plasma membrane, outer membrane
- especially effective against Gram- bacteria
- usually in topical ointments (“over the counter”) though can be given internally

polymyxin B
Metabolic Inhibitors

Some drugs selectively inhibit metabolic processes in bacteria:

Sulfonamides ("sulfa drugs")

- inhibit folic acid synthesis from PABA (para-aminobenzoic acid)
- different from folic acid synthesis in animals
- have a bacteriostatic effect
- synthetic compounds that have a broad spectrum of antimicrobial activity

Antimycobacterial Drugs

Mycobacteria are difficult targets due to their unique "acid-fast" outer membrane containing mycolic acids, and being intracellular pathogens.

The most effective antibiotics for mycobacterial infections are:

Rifamycins
 - penetrate outer membrane, inhibit transcription

Isoniazid, Ethambutol
 - directly inhibit mycolic acid synthesis
3. Antiviral Drugs

Chapter Reading – pp. 296-298

Limits of Antiviral Drugs

Viruses are especially difficult to target with drugs for several reasons:

1) viruses use host cell metabolic processes
 • it's difficult to target viral processes w/o harming host
2) viruses are intracellular parasites
 • the drug must effectively enter host cells
3) viruses can be latent
 • there's very little a drug can do to combat a provirus
4) viruses mutate very rapidly
 • thus their molecular targets can change rapidly

Nevertheless, there are a several antiviral drugs in use…

Targets of Antiviral Drugs

Antiviral drugs generally target the following:

Virus-specific enzymes
 • e.g., reverse transcriptase, integrase (inserts viral DNA into host DNA), proteases (process viral proteins)

Viral DNA replication, transcription
 • drugs inhibiting these processes may kill host cell also

Fusion of enveloped viruses
 • most enveloped viruses gain entry via fusion with the host membrane which can also be blocked
Nucleoside, Nucleotide Analogs
Many antiviral drugs are analogs of nucleosides (sugar + base) or nucleotides (sugar + base + phosphates):

- incorporated into DNA or RNA
- function as "chain terminators", preventing elongation

Acyclovir is a common antiviral drug that is an analogue of the nucleoside guanosine.

Acyclovir: Mechanism of Action

Only viral thymidine kinase (TK) phosphorylates acyclovir.

Enzyme Inhibitors
Some antiviral drugs bind directly to viral enzymes and inhibit their activity:

Protease inhibitors
- for many viral proteins to assemble into new viral particles, they must be cleaved by specific viral proteases
- protease inhibitors therefore can prevent viral maturation

Reverse transcriptase inhibitors
- unlike "chain terminators" such as nucleotide analogs, some drugs directly inhibit reverse transcriptase activity
- prevents conversion of RNA to DNA, only effective against retroviruses such as HIV
Problems with Antiviral Drugs

Toxicity

• although antiviral preferentially inhibit viral factors, they can also inhibit host cell enzymes
 • e.g., nucleotide analogs are ~100 times more likely to be used by viral polymerase than host polymerase, but this can still adversely affect host cells

Selection for “resistant” viruses

• due to viral “evolution” via mutation
 • the use of antiviral drugs in combination can minimize this problem, though viruses tend to mutate rapidly

4. Drugs for Eukaryotic Pathogens

Challenges of Eukaryotic Pathogens

Unlike bacteria, eukaryotic pathogens have less features that differ from host cells and thus less targets to work with:

• e.g., ribosomes and other metabolic processes are basically the same as ours

For this reason there are fewer drugs to turn to in order to treat eukaryotic infections, however there are some unique features with which to target many eukaryotic pathogens…
Targets of Antifungal Drugs (pp. 292, 294-295)

Fungal cells differ from animal cells like ours in the following ways thus providing targets for drug treatment:

- cell walls made of chitin
 - targeted by the echinocandin class of drugs
- fungal membranes have ergosterol as opposed to cholesterol
 - polyenes: a class of drugs that are somewhat toxic
 - azoles: a class of drugs used topically in many antifungal creams

Drugs Targeting Protists, Helminths (pp. 314-316)

Quinine
- obtained from the cinchona tree in Peru
- used for centuries to treat malaria (Plasmodium vivax)

Metronidazole (Flagyl)
- used for Trichomonas vaginalis, Giardia intestinalis
- inhibits anaerobic metabolism

Ivermectin
- produced by Streptomyces avermectinius
- paralyzes and kills many nematodes

Niclosamide
- inhibits ATP production in tapeworms

Key Terms for Chapter 10

- broad vs narrow spectrums of activity
- natural vs semisynthetic antibiotics
- penicillinase, β-lactamase
- nucleoside & nucleotide analogs
- thymidine kinase, chain terminators
- ergosterol, chitin
- Kirby-Bauer test, Etest, MIC vs MBC
 - all the various classes of antimicrobial drugs

Relevant Chapter Questions

MC: 1-10 MC: 1-8