Joints

Dr. Ali Ebneshahidi
Function of Joints

1. Serve as functional junctions between bones.
2. Bind bones, and other related tissues together.
3. Allow bone growth to occur.
4. Permit certain structures to change shape during childbirth (i.e. pubic symphysis).
5. Enable the body to have movements, lever actions, and body posture.
Classification of Joints

1. According to the type of tissue at the joint:
 a) **Fibrous joint** -- uses fibrous connective tissue to articulate bones.
 b) **Cartilaginous joint** -- uses hyaline cartilage and/or fibro-cartilage to articulate bones.
 c) **Synovial joint** -- uses auricular cartilage, synovial membrane, joint capsule, and ligaments to articulate bones.

2. According to the amount of movement at the joint:
 a) **Synarthrotic joint** -- immovable joint.
 b) **Amphiarthrotic joint** – slightly movable joint.
 c) **Diarthrotic joint** -- freely movable joint.
Fibrous Joints

a) Occur between bones that have close case contact (e.g. cranial bones, tibia and fibula, ulna and radius).
b) Fibrous connective tissue fastens the bones tightly.
c) Small amount of movement (amphiarthrosis) or no movements at all is possible (synarthrosis).
d) Subdivided into:
 - **Syndesmosis** = uses interosseous ligaments; amphiarthrotic (e.g. distal end of tibia and fibula).
 - **Suture** = uses sutural ligaments; synarthrotic (e.g. cranial sutures in the skull).
 - **Gomphosis** = uses periodontal ligaments; synarthrotic (e.g. joining teeth to maxilla and mandible).
Fibrous Joints

(a) **Suture**
Joint held together with very short, interconnecting fibers, and bone edges interlock. Found only in the skull.

(b) **Syndesmosis**
Joint held together by a ligament. Fibrous tissue can vary in length, but is longer than in sutures.

(c) **Gomphosis**
“Peg in socket” fibrous joint. Periodontal ligament holds tooth in socket.
Cartilaginous joints

a) Hyaline cartilage and/or fibro cartilage form the joint.
b) Usually slightly movable (amphiarthrotic) and very strong.
c) Subdivided into:

- **Synchondrosis** = uses hyaline cartilage, synarthrotic (e.g. between the first rib and manubrium).
- **Symphysis** = uses hyaline cartilage at the ends of bones, and a layer of fibrocartilage at the center; amphiarthrotic (e.g. intervertebral disk, pubic symphysis).
(a) Synchondroses

Bones united by hyaline cartilage

Epiphyseal plate (temporary hyaline cartilage joint)

(b) Symphyses

Bones united by fibrocartilage

Body of vertebra

Fibrocartilaginous intervertebral disc (sandwiched between hyaline cartilage)

Sternum (manubrium)

Joint between first rib and sternum (immovable)

Pubic symphysis
Synovial Joints

a) Most joints are synovial joints.
b) Usually freely movable (diarthrotic).
c) Contain articular cartilage (at the ends of bones), joint capsule (fibrous connective tissue surrounding the joint), and synovial membrane (inner lining of the joint capsule).
d) Subdivided into:

- **gliding** = allows back and forth movement (e.g. carpals sliding onto one another during wrist movements).
- **hinge** = allows folding movement (e.g. elbow joint).
- **pivot** = allows rotation around an axis (e.g. between atlas and axis at the odontoid process).
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Joint</th>
<th>Articulating Bones</th>
<th>Structural Type*</th>
<th>Functional Type; Movements Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromioclavicular</td>
<td>Acromion of scapula and clavicle</td>
<td>Synovial; plane (contains articular disc)</td>
<td>Diarthrotic; gliding and rotation of scapula on clavicle</td>
<td></td>
</tr>
<tr>
<td>Shoulder (glenohumeral)</td>
<td>Scapula and humerus</td>
<td>Synovial; ball-and-socket</td>
<td>Diarthrotic; multiaxial; flexion, extension, abduction, adduction, circumduction, rotation of humerus</td>
<td></td>
</tr>
<tr>
<td>Elbow</td>
<td>Ulna (and radius) with humerus</td>
<td>Synovial; hinge</td>
<td>Diarthrotic; uniaxial; flexion, extension of forearm</td>
<td></td>
</tr>
<tr>
<td>Proximal radioulnar</td>
<td>Radius and ulna</td>
<td>Synovial; pivot</td>
<td>Diarthrotic; uniaxial; pivot (convex head of radius rotates in radial notch of ulna)</td>
<td></td>
</tr>
<tr>
<td>Distal radioulnar</td>
<td>Radius and ulna</td>
<td>Synovial; pivot (contains articular disc)</td>
<td>Diarthrotic; uniaxial; rotation of radius around long axis of forearm to allow pronation and supination</td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>Radius and proximal carpals</td>
<td>Synovial; condylar</td>
<td>Diarthrotic; biaxial; flexion, extension, abduction, adduction, circumduction of hand</td>
<td></td>
</tr>
<tr>
<td>Intercarpal</td>
<td>Adjacent carpals</td>
<td>Synovial; plane</td>
<td>Diarthrotic; gliding</td>
<td></td>
</tr>
<tr>
<td>Carpometacarpal of digit I (thumb)</td>
<td>Carpal (trapezium) and metacarpal I</td>
<td>Synovial; saddle</td>
<td>Diarthrotic; biaxial; flexion, extension, abduction, adduction, circumduction, opposition of metacarpal I</td>
<td></td>
</tr>
<tr>
<td>Carpometacarpal of digits II–V</td>
<td>Carpal(s) and metacarpal(s)</td>
<td>Synovial; plane</td>
<td>Diarthrotic; gliding of metacarpals</td>
<td></td>
</tr>
<tr>
<td>Metacarpophalangeal (knuckle)</td>
<td>Metacarpal and proximal phalanx</td>
<td>Synovial; condylar</td>
<td>Diarthrotic; biaxial; flexion, extension, abduction, adduction, circumduction of fingers</td>
<td></td>
</tr>
<tr>
<td>Interphalangeal (finger)</td>
<td>Adjacent phalanges</td>
<td>Synovial; hinge</td>
<td>Diarthrotic; uniaxial; flexion, extension of fingers</td>
<td></td>
</tr>
</tbody>
</table>

*Synovial joints by purple circles (●).
• **condyloid** = allows all movements except rotation (e.g. between metacarpals and proximal phalanges).

• **saddle** = allows all movements except rotation (e.g. between carpals and metacarpals).

• **ball-and-socket** = allows all movements (e.g. shoulder joint and hip joint).
Synovial Joints

• Have 5 distinguishing features
 2. Joint cavity – space that is filled with synovial fluid. Synovial membrane – covers all the surface within the joint capsule and secretes synovial fluid.
 3. Articular capsule (fibrous capsule) – the joint cavity is enclosed by a double – layered articular capsule.
 4. Synovial fluid – a slippery fluid that occupies all free spaces within the joint capsule.
 5. Reinforcing ligaments – are reinforced by a number of ligaments.
Ligament

Joint cavity (contains synovial fluid)

Articular (hyaline) cartilage

Fibrous layer

Synovial membrane (secretes synovial fluid)

Articular capsule

Periosteum
• Some synovial joints such as hip and knee have fatty pads between the fibrous capsule and the bone
• Some have discs or wedges of fibrocartilage separating the articular surface of bones (e.g. menisci of knee)
• Some synovial joints have **bursa** which is a fluid filled sac containing the synovial fluid.
• **Ligament:** a sheet of strong fibrous connective tissue connecting the articular ends of bones, binding them together and facilitating or limiting motion.
• **Tendon:** fibrous connective tissue that attaches muscle to bone.
(a) Frontal section through the right shoulder joint

(b) Enlargement of (a), showing how a bursa eliminates friction where a ligament (or other structure) would rub against a bone
Shoulder Joint

• Ball and Socket joint
• Ligaments:
 a) **Coracohumeral** ligament – connects the coracoid process of scapula to the greater tubercle of the humerus.
 b) **Glenohumeral** ligament – extend from the edge of glenoid cavity to lesser tubercle of humerus
 c) **Transverse humeral** ligament – runs between the lesser and the greater tubercles.
 d) **Coracoacromial** ligament.
 d) **Glenoid labrum** – attaches along the margin of glenoid cavity.
Shoulder Joint

- **Rotator cuff**: muscles that encircle the shoulder joint.
 - made up of 4 muscles:
 - subscapularis
 - supraspinatus
 - infraspinatus
 - teres minor
Elbow joint

• Hinge joint

• ligaments:

 Annular ligament: surrounds the head of radius, and attaches to the trochlear notch of ulna.

 Ulnar collateral ligament:

 * Ant. end of ligament connects the medial epicedial of humerus to the medial margin of the coronoid process of the ulna.

 * Post. end – attaches the medial epicondyle of humerus to the olecranon process of the ulna.

 Radial collateral ligament: extends between lat. epicondyle of humerus and the annular ligament of the radius.
Knee Joint

- largest synovial joint
- Hinge joint
- Ligaments – associated with joint capsule:

 Patellar ligament – is continuation of the tendon of quadriceps femoris muscle; extends from patella to tibial tuberosity.

 Oblique popliteal ligament – is continuation of the tendon of semimembranous muscle crossing the posterior knee joint. This ligament connects the lat. condyle of the femur to head of tibia.

 Arcuate popliteal ligament – extends from lat. condyle of femur to head of fibula.

 Tibial collateral ligament (medial collateral ligament) - connects medial condyle of femur to the medial condyle of tibia.

 Fibular collateral ligament (lateral collateral ligament) – connects lateral condyle of femur to head of fibula.
• **Intercapsular ligaments:**

 are within the joint and include the **Anterior & Posterior Cruciate ligaments**.

 * Ant. cruciate: extends from the ant. intercondylar area of tibia to lat. condyle of femur

 * post. cruciate: extends from the post. intercondylar area of tibia to the medial condyle of femur.

• **Menisci** – Interarticular fibrocartilage separating the articular surfaces of femur and tibia.
Hip Joint

• Ball and socket joint
• Ligaments:
 - **Iliofemoral ligament** – connects the anterior inferior iliac spine to intertrochanteric line (between lesser and greater trochanter).
 - **Pubofemoral ligament** – extends between the superior portion of pubis and the iliofemoral ligament.
 - **Ischiofemoral ligament** – extends from ischium to the joint capsule itself.
Hip Joint

(c) Posterior view of right hip joint, capsule in place

(d) Anterior view of right hip joint, capsule in place
Joint Motion

1. Types of joint movements should be studied in the following diagrams.

2. For each movement, the definition and an example should be learned.

3. One way to remember these movements is by their opposite direction.
 - Flexion vs. Extension
 - Abduction vs. Adduction
 - Supination vs. Pronation
 - Dorsiflexion vs. Plantar flexion
 - Eversion vs. Inversion
 - Protraction vs. Retraction
 - Elevation vs. Depression
(d) Angular movements: flexion, extension, and hyperextension at the shoulder and knee
(b) Angular movements: flexion, extension, and hyperextension of the neck

(c) Angular movements: flexion, extension, and hyperextension of the vertebral column
(e) Angular movements: abduction, adduction, and circumduction of the upper limb at the shoulder

(f) Rotation of the head, neck, and lower limb
Disorders of Joints

1. **Dislocation** = displacement of articulating bones of a joint, as a result of a fall or unusual body movements.

2. **Sprain** = results of overstretching or tearing of the connective tissue ligament, or tendon at a joint.

3. **Bursitis** = inflammation of the bursa (a sac filled with synovial fluid at the synovial joint) caused by excessive use of a joint.

4. **Arthritis** = inflammation of a joint that causes swelling and pain (rheumatoid arthritis is an *autoimmune* disease where white blood calls attack the joint tissues; while osteoarthritis is a natural degeneration of joint tissues).
Clinical Terms

- **Arthroscopic surgery**: removal of damaged cartilage from the joint.
- **Dislocation**: bone out of alignment at a joint.
- **Subluxation**: partial dislocation.
- **Bursitis**: inflammation of bursa caused by trauma or excessive friction.
- **Arthritis**: inflammatory or Degenerative Joint Disease (DJD) that damage the joints.
- **Osteoarthritis**: non-inflammatory arthritis, mostly seen in elderly.
- **Rheumatoid arthritis**: an autoimmune disease involving severe inflammation of joints, very painful.
- **Sprain**: result from overstretching or tearing of connective tissues, ligaments, and tendons associated with a joint.