NUCLEAR MAGNETIC RESONANCE (NMR)
Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy identifies the carbon–hydrogen framework of an organic compound.

Certain nuclei, such as ^1H, ^{13}C, ^{15}N, ^{19}F, and ^{31}P, have a nonzero value for their spin quantum number; this property allows them to be studied by NMR.
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

• Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.

• Two common types of NMR spectroscopy are used to characterize organic structure: 1H NMR is used to determine the type and number of H atoms in a molecule; ^{13}C NMR is used to determine the type of carbon atoms in the molecule.

• The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency.

• When low-energy radio waves interact with a molecule, they can change the nuclear spins of some elements, including 1H and ^{13}C.
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

- When a charged particle such as a proton spins on its axis, it creates a magnetic field. Thus, the nucleus can be considered to be a tiny bar magnet.

- Normally, these tiny bar magnets are randomly oriented in space. However, in the presence of a magnetic field B_0, they are oriented with or against this applied field. More nuclei are oriented with the applied field because this arrangement is lower in energy.

- The energy difference between these two states is very small (<0.1 cal).
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

• In a magnetic field, there are now two energy states for a proton: a lower energy state with the nucleus aligned in the same direction as B_0, and a higher energy state in which the nucleus aligned against B_0.

• When an external energy source ($h\nu$) that matches the energy difference (ΔE) between these two states is applied, energy is absorbed, causing the nucleus to “spin flip” from one orientation to another.

• The energy difference between these two nuclear spin states corresponds to the low frequency RF region of the electromagnetic spectrum.
The Δ Energy Between the Two Spin States Depends on the Strength of the Applied Magnetic Field (B_o)
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

• Thus, two variables characterize NMR: an applied magnetic field B_0, the strength of which is measured in tesla (T), and the frequency ν of radiation used for resonance, measured in hertz (Hz), or megahertz (MHz)—(1 MHz = 10^6 Hz).

• A nucleus is in resonance when it absorbs RF radiation and “spin flips” to a higher energy state.
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

• The frequency needed for resonance and the applied magnetic field strength are proportionally related:

\[\nu \propto B_0 \]

• The stronger the magnetic field, the larger the energy difference between the two nuclear spin states, and the higher the \(\nu \) needed for resonance.

• NMR spectrometers are referred to as 300 MHz instruments, 500 MHz instruments, and so forth, depending on the frequency of the RF radiation used for resonance.

• These spectrometers use very powerful magnets to create a small but measurable energy difference between two possible spin states.
All the Hydrogens in a Compound Do Not Experience the Same Magnetic Field

\[B_{\text{effective}} = B_{\text{applied}} - B_{\text{local}} \]

The electrons surrounding the nucleus decrease the effective applied magnetic field sensed by the nucleus.
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

Schematic of an NMR spectrometer

An NMR spectrometer. The sample is dissolved in a solvent, usually CDCl$_3$ (deuterochloroform), and placed in a magnetic field. A radiofrequency generator then irradiates the sample with a short pulse of radiation, causing resonance. When the nuclei fall back to their lower energy state, the detector measures the energy released, and a spectrum is recorded. The superconducting magnets in modern NMR spectrometers have coils that are cooled in liquid helium and conduct electricity with essentially no resistance.
Nuclear Magnetic Resonance Spectroscopy

Introduction to NMR Spectroscopy

- Protons in different environments absorb at slightly different frequencies, so they are distinguishable by NMR.
- The frequency at which a particular proton absorbs is determined by its electronic environment.
- The size of the magnetic field generated by the electrons around a proton determines where it absorbs.
- Modern NMR spectrometers use a constant magnetic field strength B_0, and then a narrow range of frequencies is applied to achieve the resonance of all protons.
- Only nuclei that contain odd mass numbers (such as ^1H, ^{13}C, ^{19}F and ^{31}P) or odd atomic numbers (such as ^2H and ^{14}N) give rise to NMR signals.
Chemically Equivalent Protons
(protons in the same environment)

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \]
Nuclear Magnetic Resonance Spectroscopy

\(^1\)H NMR—The Spectrum

• NMR absorptions generally appear as sharp peaks.
• Increasing chemical shift is plotted from left to right.
• Most protons absorb between 0-10 ppm.
• The terms “upfield” and “downfield” describe the relative location of peaks. Upfield means to the right. Downfield means to the left.
• NMR absorptions are measured relative to the position of a reference peak at 0 ppm on the δ scale due to tetramethylsilane (TMS). TMS is a volatile inert compound that gives a single peak upfield from typical NMR absorptions.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—The Spectrum

- The chemical shift of the x axis gives the position of an NMR signal, measured in ppm, according to the following equation:

$$\text{chemical shift} \quad (\text{in ppm on the } \delta \text{ scale}) \quad = \quad \frac{\text{observed chemical shift (in Hz) downfield from TMS}}{\nu \text{ of the NMR spectrometer (in MHz)}}$$

- By reporting the NMR absorption as a fraction of the NMR operating frequency, we get units, ppm, that are independent of the spectrometer.

- Four different features of a 1H NMR spectrum provide information about a compound’s structure:
 a. Number of signals
 b. Position of signals
 c. Intensity of signals.
 d. Spin-spin splitting of signals.
Nuclear Magnetic Resonance Spectroscopy

\(^1 \text{H NMR} \text{— Number of Signals} \)

• The number of NMR signals equals the number of different types of protons in a compound.
• Protons in different environments give different NMR signals.
• Equivalent protons give the same NMR signal.

- \(\text{CH}_3\text{-O-CH}_3 \)
 - All equivalent H’s
 - 1 NMR signal

- \(\text{CH}_3\text{CH}_2\text{-Cl} \)
 - 2 types of H’s
 - 2 NMR signals

- \(\text{CH}_3\text{-O-CH}_2\text{CH}_3 \)
 - 3 types of H’s
 - 3 NMR signals

• To determine equivalent protons in cycloalkanes and alkenes, always draw all bonds to hydrogen.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Number of Signals

The number of 1H NMR signals of some representative organic compounds
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Number of Signals

• In comparing two H atoms on a ring or double bond, two protons are equivalent only if they are *cis* (or *trans*) to the same groups.

- 1,1-dichloroethylene: 1 type of H, 1 NMR signal
- 1-bromo-1-chloroethylene: 2 types of H’s, 2 NMR signals
- Chloroethylene: 3 types of H’s, 3 NMR signals
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Number of Signals

- Proton equivalency in cycloalkanes can be determined similarly.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Cyclohexane Conformers

- Recall that cyclohexane conformers interconvert by ring flipping.
- Because the ring flipping is very rapid at room temperature, an NMR spectrum records an average of all conformers that interconvert.
- Thus, even though each cyclohexane carbon has two different types of hydrogens—one axial and one equatorial—the two chair forms of cyclohexane rapidly interconvert them, and an NMR spectrum shows a single signal for the average environment that it “sees”.

![Diagram of cyclohexane with axial and equatorial hydrogens interconverting](image)
The axial and equatorial hydrogens of cyclohexane-d_{11} are equivalent and show one sharp signal.

The rate of chair–chair interconversion is temperature dependent: as the temperature decreases, the signal broadens and eventually two signals are observed.
Each set of chemically equivalent protons give a signal in the 1H NMR spectrum.
Number of Signals

its 1H NMR spectrum has three signals

bromoethene
H_a and H_b are not equivalent

its 1H NMR spectrum has five signals

chlorocyclobutane
H_a and H_b are not equivalent
H_c and H_d are not equivalent
Enantiotopic Hydrogens

Replacing one of the enantiotopic hydrogens with a deuterium (or any other atom or group other than CH$_3$ or OH) forms an asymmetric center.

Enantiotopic hydrogens are chemically equivalent.
Diastereotopic Hydrogens

Replacing each of the diastereotopic hydrogens in turn by a deuterium forms a pair of diastereomers.

Diastereotopic hydrogens are not chemically equivalent.
Diastereotopic Hydrogens are Not Chemically Equivalent

Diastereotopic hydrogens react with achiral reagents at different rates.
The three methyl hydrogens are in different environments because of rotation about the C—C bond; but on the NMR time scale, they are in the same environment.
Terms to Remember

<table>
<thead>
<tr>
<th>protons in electron-poor environments</th>
<th>protons in electron-dense environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>deshielded protons</td>
<td>shielded protons</td>
</tr>
<tr>
<td>downfield</td>
<td>upfield</td>
</tr>
<tr>
<td>high frequency</td>
<td>low frequency</td>
</tr>
<tr>
<td>large δ values</td>
<td>small δ values</td>
</tr>
</tbody>
</table>

δ ppm

frequency

Intensity

Downfield (deshielded)

Low-field

10 9 8 7 6 5 4 3 2 1 0 ppm

Direction of field sweep

Upfield (shielded)

Calibration peak (TMS)

High-field
Where Protons Show a Signal

These protons sense a larger effective magnetic field, so come into resonance at a higher frequency.

These protons sense a smaller effective magnetic field, so come into resonance at a lower frequency.

Intensity

"downfield" Frequency "upfield"
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Position of Signals

Shielding and deshielding effects

- As the electron density around the nucleus increases, the nucleus feels a smaller resultant magnetic field, so a lower frequency is needed to achieve resonance.
- The absorption shifts upfield.

- As the electron density around the nucleus decreases, the nucleus feels a larger resultant magnetic field, so a higher frequency is needed to achieve resonance.
- The absorption shifts downfield.
Where 1H NMR Signals Appear
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Position of Signals
• The less shielded the nucleus becomes, the more of the applied magnetic field (B_0) it feels.
• This deshielded nucleus experiences a higher magnetic field strength, so it needs a higher frequency to achieve resonance.
• Higher frequency is to the left in an NMR spectrum, toward higher chemical shift—so deshielding shifts an absorption downfield.
• Protons near electronegative atoms are deshielded, so they absorb downfield.
Methine protons appear at higher frequency than methylene protons, which appear at a higher frequency than methyl protons.
Relative Positions of the Signals

The closer the electronegative the atom (or group), the more it deshields the protons.
Relative Positions of the Signals

Protons in electron-poor environments show signals at high frequencies.

Electron withdrawal causes NMR signals to appear at a higher frequency (at a larger δ value).
<table>
<thead>
<tr>
<th>Type of proton</th>
<th>Approximate chemical shift (ppm)</th>
<th>Type of proton</th>
<th>Approximate chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—CH<sub>3</sub></td>
<td>0.85</td>
<td>I—C—H</td>
<td>2.5–4</td>
</tr>
<tr>
<td>—CH<sub>2</sub></td>
<td>1.20</td>
<td>Br—C—H</td>
<td>2.5–4</td>
</tr>
<tr>
<td>—CH—</td>
<td>1.55</td>
<td>Cl—C—H</td>
<td>3–4</td>
</tr>
<tr>
<td>—C≡C—CH<sub>3</sub></td>
<td>1.7</td>
<td>F—C—H</td>
<td>4–4.5</td>
</tr>
<tr>
<td>—C—CH<sub>3</sub></td>
<td>2.1</td>
<td>R—NH<sub>2</sub></td>
<td>Variable, 1.5–4</td>
</tr>
<tr>
<td>—CH<sub>3</sub></td>
<td>2.3</td>
<td>R—OH</td>
<td>Variable, 2–5</td>
</tr>
<tr>
<td>—C≡C—H</td>
<td>2.4</td>
<td>—OH</td>
<td>Variable, 4–7</td>
</tr>
<tr>
<td>R—O—CH<sub>3</sub></td>
<td>3.3</td>
<td>O</td>
<td>6.5–8</td>
</tr>
<tr>
<td>R—C≡CH<sub>2</sub></td>
<td>4.7</td>
<td>—C—H</td>
<td>9.0–10</td>
</tr>
<tr>
<td>R—C≡C—H</td>
<td>5.3</td>
<td>—C—OH</td>
<td>Variable, 10–12</td>
</tr>
<tr>
<td>R R R</td>
<td></td>
<td>—C—NH<sub>2</sub></td>
<td>Variable, 5–8</td>
</tr>
</tbody>
</table>

The values are approximate because they are affected by neighboring substituents.
The Relative Positions of Signals

In the same environment, a methine proton appears at a higher frequency than methylene protons, which appear at a higher frequency than methyl protons.
Protons Attached to sp^2 Carbons

The chemical shift of protons attached to sp^2 carbons appear at higher frequencies than one would predict.
Nuclear Magnetic Resonance Spectroscopy

^{1}H NMR—Chemical Shift Values

- In a magnetic field, the six π electrons in benzene circulate around the ring creating a ring current.
- The magnetic field induced by these moving electrons reinforces the applied magnetic field in the vicinity of the protons.
- The protons thus feel a stronger magnetic field and a higher frequency is needed for resonance. Thus they are deshielded and absorb downfield.
Diamagnetic Anisotropy
(Benzene Ring Protons)

The protons show signals at higher frequencies because they sense a larger effective magnetic field.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Chemical Shift Values

- In a magnetic field, the loosely held π electrons of the double bond create a magnetic field that reinforces the applied field in the vicinity of the protons.
- The protons now feel a stronger magnetic field, and require a higher frequency for resonance. Thus the protons are deshielded and the absorption is downfield.
Diamagnetic Anisotropy
(Alkenes and Aldehydes)

The protons show signals at higher frequencies because they sense a larger effective magnetic field.
A Hydrogen Bonded to an sp Carbon

The chemical shift of a hydrogen bonded to an sp carbon appears at a lower frequency than it would if the π electrons did not induce a magnetic field.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Chemical Shift Values

- In a magnetic field, the π electrons of a carbon-carbon triple bond are induced to circulate, but in this case the induced magnetic field opposes the applied magnetic field (B_0).
- Thus, the proton feels a weaker magnetic field, so a lower frequency is needed for resonance. The nucleus is shielded and the absorption is upfield.

![Diagram of induced magnetic field opposing the external field B_0 in the vicinity of the proton.]

The proton is shielded. The absorption is upfield at \sim2.5 ppm.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Intensity of Signals

- The area under an NMR signal is proportional to the number of absorbing protons.

- An NMR spectrometer automatically integrates the area under the peaks, and prints out a stepped curve (integral) on the spectrum.

- The height of each step is proportional to the area under the peak, which in turn is proportional to the number of absorbing protons.

- Modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units.

- The ratio of integrals to one another gives the ratio of absorbing protons in a spectrum. Note that this gives a ratio, and not the absolute number, of absorbing protons.
INTEGRATION
The Relative Number of Protons

The area under each signal is proportional to the number of protons giving rise to the signal.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Intensity of Signals

![NMR Spectrogram](image-url)

- $\text{CH}_3\text{OC(CH}_3\text{)}_3$
- CH_3O^-: intensity 20
- $(\text{CH}_3\text{)}_3\text{C}^-$: intensity 60

Chemical Shift (ppm)
The 1H NMR Spectrum of 1,3-Dibromopropane

Triplet
- two neighboring protons

Quintet
- four neighboring protons
An 1H NMR Spectrum
An 1H NMR Spectrum of Allyl Bromide
The signals for the H_c, H_d, and H_e protons overlap because the electronic effect of an ethyl substituent is similar to that of a hydrogen.
An 1H NMR Spectrum of Nitrobenzene

The signals for the H_a, H_b, and H_c protons do not overlap because the nitro group is strongly electron withdrawing.
Nuclear Magnetic Resonance Spectroscopy

\(^1\text{H NMR—Spin-Spin Splitting}\)

- **Spin-spin splitting** occurs only between *nonequivalent protons* on the same carbon or adjacent carbons.

Let us consider how the *doublet* due to the \(\text{CH}_2\) group on \(\text{BrCH}_2\text{CHBr}_2\) occurs:

- When placed in an applied electric field, \((B_0)\), the adjacent proton \((\text{CHBr}_2)\) can be aligned with \((\uparrow)\) or against \((\downarrow)\) \(B_0\).
- Thus, the absorbing \(\text{CH}_2\) protons feel two slightly different magnetic fields—one slightly larger than \(B_0\), and one slightly smaller than \(B_0\).
- Since the absorbing protons feel two different magnetic fields, they absorb at two different frequencies in the NMR spectrum, thus splitting a single absorption into a doublet.
SPLITTING \((N + 1)\)

\(N\) is the number of equivalent protons on adjacent carbons that are not equivalent to the protons that produce the signal.
Coupling Constants

The coupling constant \((J)\) is the distance between two adjacent peaks of a split NMR signal in hertz. Coupled protons have the same coupling constant.
What Causes Splitting?

CH₂CHCl₂

chemical shift of the methine proton if there were no protons on the adjacent carbon

signal for the methine proton is split into a quartet
What Causes Splitting?

- **Direction of the Applied Field**
 - If the magnetic field of the methine proton is in the same direction as the applied magnetic field, it will add to the applied magnetic field, so the adjacent methyl protons will show a signal at a slightly higher frequency.
 - If the magnetic field of the methine proton is lined up against the applied magnetic field, it will subtract from the applied magnetic field, so the adjacent methyl protons will show a signal at a slightly lower frequency.

- **Chemical Shift of the Signal**
 - Chemical shift of the signal for the methyl protons if there were no protons on the adjacent carbon.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

The frequency difference, measured in Hz between two peaks of the doublet is called the **coupling constant**, J.

- **How a doublet arises**
 - With no adjacent H's: The absorbing H's feel only one magnetic field.
 - With one adjacent H: The absorbing H's feel two different fields, so they absorb at two different frequencies.

- The NMR signal is a single peak.
- The NMR signal is split into a doublet.

- One adjacent proton splits an NMR signal into a doublet.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

How a triplet arises

- **With no adjacent H's:**
 - The absorbing H feels only one magnetic field.
 - The NMR signal is a single peak.

- **With two adjacent H's:**
 - The absorbing H feels three different fields, so it absorbs at three different frequencies.
 - The NMR signal is split into a triplet.

three different magnetic fields

1:2:1
Why a Quartet?
Why 1:3:3:1?

the ways in which the magnetic fields of three protons can be aligned
A Quartet *versus* a Doublet of Doublets

A quartet

relative intensities: 1 : 3 : 3 : 1

A doublet of doublets

relative intensities: 1 : 1 : 1 : 1
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

Three general rules describe the splitting patterns commonly seen in the 1H NMR spectra of organic compounds.

1. Equivalent protons do not split each other’s signals.
2. A set of n nonequivalent protons splits the signal of a nearby proton into n + 1 peaks.
3. Splitting is observed for nonequivalent protons on the same carbon or adjacent carbons.

If H_a and H_b are not equivalent, splitting is observed when:

- H_a and H_b are on the same carbon.
- H_a and H_b are on adjacent carbons.
Splitting is Observed if the Protons are Separated by No More Than Three Bonds

H_a and H_b do not split each other’s signal because they are separated by three σ bonds.

H_a and H_b do not split each other’s signal because they are separated by four σ bonds.

H_a and H_b may split each other’s signal because they are separated by four bonds, one of which is a double bond.

Splitting may occur through four bonds if one is a double bond.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

When two sets of adjacent protons are different from each other (n protons on one adjacent carbon and m protons on the other), the number of peaks in an NMR signal = \((n + 1)(m + 1)\).

- The H_b signal is split into 12 peaks, a quartet of triplets. The number of peaks actually seen for the signal depends on the relative size of the coupling constants, J_{ab} and J_{bc}. When $J_{ab} >> J_{bc}$, as drawn in this diagram, all 12 lines of the pattern are visible. When J_{ab} and J_{bc} are similar in magnitude, peaks overlap and fewer lines are observed.
The number of peaks observed depends on the relative magnitudes of the coupling constants.
\[J_{ab} = J_{ac} \]
Splitting

\[\text{CH}_3\text{CH}_2\text{OCH}_3 \]

- \(a \) is a triplet
- \(b \) is a quartet
- \(c \) is a singlet

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{COH} \]

- \(a \) is a triplet
- \(b \) is a sextet
- \(c \) is a triplet
- \(d \) is a singlet
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

- Protons on carbon-carbon double bonds often give characteristic splitting patterns.
- A disubstituted double bond can have two geminal protons, two cis protons, or two trans protons.
- When these protons are different, each proton splits the NMR signal of the other so that each proton appears as a doublet.
- The magnitude of the coupling constant J for these doublets depends on the arrangement of hydrogen atoms.

![Diagram showing coupling constants for geminal, cis, and trans protons.]

(characteristic coupling constants for three types of disubstituted alkenes)
Coupling Constants

Table 15.2 Approximate Values of Coupling Constants

<table>
<thead>
<tr>
<th>Types of protons</th>
<th>Approximate value of J_{ab} (Hz)</th>
<th>Types of protons</th>
<th>Approximate value of J_{ab} (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_a H_b</td>
<td>0</td>
<td>H_a H_b</td>
<td>0 (long-range coupling)</td>
</tr>
<tr>
<td>$C\equiv C$</td>
<td>7</td>
<td>$C\equiv C$</td>
<td>10 (cis)</td>
</tr>
<tr>
<td>$C\equiv C$</td>
<td>12</td>
<td>$C\equiv C$</td>
<td>15 (trans)</td>
</tr>
<tr>
<td>$C\equiv C$</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

1H NMR spectra for the alkenyl protons of (E)- and (Z)-3-chloropropenoic acid

- Although both (E)- and (Z)-3-chloropropenoic acid show two doublets in their 1H NMR spectra for their alkenyl protons, $J_{\text{trans}} > J_{\text{cis}}$.
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

The 1H NMR spectrum of vinyl acetate (CH$_2$=CHOCOCH$_3$)
Nuclear Magnetic Resonance Spectroscopy

1H NMR—Spin-Spin Splitting

Splitting diagrams for the alkenyl protons in vinyl acetate are shown below. Note that each pattern is different in appearance because the magnitude of the coupling constants forming them is different.

Splitting diagram for the alkenyl protons in vinyl acetate (CH$_2$=CHOCHOCH$_3$)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Nuclear Magnetic Resonance Spectroscopy

\(^1\)H NMR—OH Protons

- Under usual conditions, an OH proton does not split the NMR signal of adjacent protons.
- The signal due to an OH proton is not split by adjacent protons.

The \(^1\)H spectrum of ethanol (\(\text{CH}_3\text{CH}_2\text{OH}\))
Nuclear Magnetic Resonance Spectroscopy

1H NMR—OH Protons

- The H_a signal is split by the two H_b protons into three peaks (a triplet).
- The H_b signal is split only by the three H_a protons into four peaks, a quartet. The adjacent OH proton does not split the signal due to H_b.
- H_c is a singlet because OH protons are not split by adjacent protons.
- Protons on electronegative atoms rapidly exchange between molecules in the presence of trace amounts of acid or base. Thus, the CH_2 group of ethanol never “feels” the presence of the OH proton, because the OH proton is rapidly moving from one molecule to another.
- This phenomenon usually occurs with NH and OH protons.
- The chemical shift depends on the extent of hydrogen bonding.
- They generally appear as broad signals.
Deuterium Signals are Not Seen in an 1H NMR Spectrum

\[
\text{R–O–H} + \text{D–O–D} \quad \rightarrow \quad \text{R–O–D} + \text{D–O–H}
\]

seen in 1H NMR

not seen in 1H NMR
Summary

• The **number of signals** tells us the number of sets of equivalent protons in the compound.

• The **value of the chemical shifts** tells us the nature of the chemical environment: alkyl, alkene, benzene, etc.

• The **integration values** tells us the relative number of protons.

• The **splitting** tells us the number of neighboring protons.

• The **coupling constants** identifies coupled protons.
^{13}C NMR Spectroscopy

- The number of signals reflects the number of different kinds of carbons in a compound.
- The chemical shift ranges over 220 ppm.
- The reference compound is TMS.
<table>
<thead>
<tr>
<th>Type of carbon</th>
<th>Approximate chemical shift (ppm)</th>
<th>Type of carbon</th>
<th>Approximate chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH₃)₄Si</td>
<td>0</td>
<td>C—I</td>
<td>−20–10</td>
</tr>
<tr>
<td>R—CH₃</td>
<td>0–35</td>
<td>C—Br</td>
<td>10–40</td>
</tr>
<tr>
<td>R—CH₂—R</td>
<td>15–55</td>
<td>C—Cl</td>
<td>25–50</td>
</tr>
<tr>
<td>R—CH—R</td>
<td>25–55</td>
<td>C—N</td>
<td>40–60</td>
</tr>
<tr>
<td>R—C—R</td>
<td>30–40</td>
<td>C—O</td>
<td>50–90</td>
</tr>
<tr>
<td>C≡C</td>
<td>70–90</td>
<td>R</td>
<td>165–175</td>
</tr>
<tr>
<td>C≡N</td>
<td>110–120</td>
<td>R</td>
<td>175–185</td>
</tr>
<tr>
<td>C≡C</td>
<td>80–145</td>
<td>R</td>
<td>190–200</td>
</tr>
<tr>
<td>C≡N</td>
<td>150–170</td>
<td>R</td>
<td>205–220</td>
</tr>
<tr>
<td>🌿</td>
<td>110–170</td>
<td>R</td>
<td>205–220</td>
</tr>
</tbody>
</table>
Where 13C NMR Signals Appear

![Diagram showing chemical shifts and their corresponding signals in NMR spectroscopy.](image)
Nuclear Magnetic Resonance Spectroscopy

13C NMR

13C Spectra are easier to analyze than 1H spectra because the signals are not split. Each type of carbon atom appears as a single peak.
The 13C NMR Spectrum of 2-Butanol
Nuclear Magnetic Resonance Spectroscopy

13C NMR

- The lack of splitting in a 13C spectrum is a consequence of the low natural abundance of 13C.

- Recall that splitting occurs when two NMR active nuclei—like two protons—are close to each other. Because of the low natural abundance of 13C nuclei (1.1%), the chance of two 13C nuclei being bonded to each other is very small (0.01%), and so no carbon-carbon splitting is observed.

- A 13C NMR signal can also be split by nearby protons. This 1H-13C splitting is usually eliminated from the spectrum by using an instrumental technique that decouples the proton-carbon interactions, so that every peak in a 13C NMR spectrum appears as a singlet.

- The two features of a 13C NMR spectrum that provide the most structural information are the number of signals observed and the chemical shifts of those signals.
Nuclear Magnetic Resonance Spectroscopy

13C NMR—Number of Signals

- The number of signals in a 13C spectrum gives the number of different types of carbon atoms in a molecule.

- Because 13C NMR signals are not split, the number of signals equals the number of lines in the 13C spectrum.

- In contrast to the 1H NMR situation, peak intensity is not proportional to the number of absorbing carbons, so 13C NMR signals are not integrated.
Nuclear Magnetic Resonance Spectroscopy

13C NMR—Number of Signals

- The three types of C’s in methyl acetate—identified as C_a, C_b, and C_c—give rise to three 13C NMR signals.
- The carbonyl carbon (C_b) is highly deshielded, so it absorbs farthest downfield.
- C_a, an sp3 hybridized C that is not bonded to an O atom, is the most shielded, and so it absorbs farthest upfield.
- Thus, in order of increasing chemical shift: $C_a < C_c < C_b$.

b. Methyl acetate

![Diagram of methyl acetate with NMR spectrum]
Nuclear Magnetic Resonance Spectroscopy

\(^{13}\text{C} \text{ NMR—Number of Signals}\)

Representative \(^{13}\text{C} \text{ NMR}\) spectra

- The three types of C’s in 1-propanol—identified as \(C_a\), \(C_b\), and \(C_c\)—give rise to three \(^{13}\text{C} \text{ NMR}\) signals.
- Deshielding increases with increasing proximity to the electronegative O atom, and the absorption shifts downfield; thus, in order of increasing chemical shift: \(C_b < C_a < C_c\).