II #6

Lemma: If \(p \) divides \(ab \), and if \(p \) does not divide \(a \), then \(p \) must divide \(b \).

Theorem: Show that if \(p \) is prime, and \(k \in \mathbb{Z} \) such that \(1 \leq k \leq p - 1 \), then \(p | \binom{p}{k} \).

Proof:
Firstly, \(\binom{p}{k} \) is a positive integer because of its combinatorial meaning.

\[
\binom{p}{k} = \frac{p!}{(p-k)!k!} = \frac{p(p-1)(p-2) \ldots (p-(k-1))!}{k!} \\
k! \binom{p}{k} = p(p-1)(p-2) \ldots (p-(k-1))!
\]

Since \(p \) is a factor of the RHS, it must be a factor of \(k! \binom{p}{k} \). Because \(k < p \), it follow that \(k! \) does not contain a copy of \(p \), and since \(p \) is prime, \(k! \) also cannot contain the factors of \(p \) (since \(p \) has no factors). Therefore, \(p \) does not divide \(k! \). So \(p \) must divide \(\binom{p}{k} \).

IV. Set Theory

(a) (vi) \(B \subseteq A \cup B \)

Proof: To prove a statement involving \(\subseteq \) we need to show that anytime an arbitrary element \(x \) is in the left side, it must also be in the right side. So, let \(x \in B \), then by “addition” property of propositional logic, it’s true that \((x \in B) \lor (x \in A) \). So, \(x \in A \cup B \).

VI. Induction

(a) (i)

Using the division algorithm, if we divide \(n \) by 3, we get \(n = 3q + r \), it follows that \(0 \leq r < 3 \). This implies that \(n \equiv 0 \pmod{3} \) or \(n \equiv 1 \pmod{3} \), or \(n \equiv 2 \pmod{3} \)

Explanation for the formula for \(n \) choose \(k \):

\[
\binom{n}{k} = \frac{n(n-1)(n-(k-1))!}{1} = \frac{n!}{(n-k)!k!}
\]

A, B, C, D, E

ABCDE, ACDEB, ADBCE, AEBCD, BACDE, ...

\(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! \)

A,B,C,D,E

ABC, ABD, ABE, ACB, ACD, ACE, ADB, ADC, ADE, AEB, AEB, AED,
BAC, BCA,...

\[P(5, 3) = 5 \cdot 4 \cdot 3 = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1} = \frac{5!}{2!} = \frac{5!}{(5-3)!} = 60 \]

\[\binom{5}{3} = C(5, 3) = \frac{60}{6} = 10 \]

(VII) (b)

Theorem: The Divisibility Criterion for 9: If the sum of the digits of a number is divisible by 9, then the number is divisible by 9.

Proof: Let’s restrict it to a 4 digit number. Let \(n \) be a 4 digit number, such that 9 divides the sum of its digits. First, \(n \) can be written as \(n = 1000a + 100b + 10c + d \) where \(a, b, c, d \) are its digits. \(n = 999a + 99b + 9c + (a + b + c + d) \)

By hypothesis, \(9 \mid (a + b + c + d) \). Furthermore \(9 \mid (999a + 99b + 9c) \), so 9 divides their sum which is \(n \).

(VII) (e)

Suppose \(m \) and \(n \) are perfect squares. So, there exist \(t, s \) such that \(m = t^2 \) and \(n = s^2 \).

\(mn = t^2s^2 = (ts)^2 \), so \(mn \) is also a perfect square.

(m) **Lemma:** \(a \equiv b \pmod{p} \rightarrow a^n \equiv b^n \pmod{p} \)

Remember Fermat’s little theorem: Assuming \(p \) does not divide \(b \), \(b^{p-1} \equiv 1 \pmod{p} \).

\[11^{3-1} \equiv 1 \pmod{3} \]

\[11^{300} = (11^2)^{150} \equiv 1^{150} \equiv 1 \pmod{3} \]

\[11^{301} = 11^{300} \cdot 11 \equiv 1 \cdot 11 \equiv 11 \equiv 2 \pmod{3} \]