By definition we say the tangent line to the curve \(f(x) \) at the point \(P(a, f(a)) \) is the line through \(P \) with slope
\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
\]
* Remember the idea is to get as close to the point \((a, f(a))\), which is why we take the limit as \(h \) approaches to \(a \).

Find an equation of the tangent line to the parabola \(y = x^2 - 8x + 9 \) at the point \((3, -6)\)

1. Find difference of quotient

\[
\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - 8(x+h) + 9 - (x^2 - 8x + 9)}{h}
\]

\[
= \frac{x^2 + 2xh + h^2 - 8x - 8h + 9 - x^2 + 8x - 9}{h}
\]

\[
= \frac{2xh + h^2 - 8h}{h}
\]

\[
= \frac{h(2x + h - 8)}{h}
\]

\[
= 2x + h - 8
\]
(2) Now take the limit as h approaches zero
\[\lim_{h \to 0} 2x + h - 8 = 2x - 8 \quad \text{Slope of the curve} \]

(3) Find the slope at the specific point $(3, -6)$
\[2(3) - 8 = 6 - 8 = -2 \]

(4) Find the equation of the tangent line using algebra
\[y - y_1 = m(x - x_1) \]
\[y - (-6) = -2(x - 3) \]
\[y + 6 = -2x + 6 \]
\[y = -2x \]

Problems: Find an equation of the tangent line to the curve at the given point.

1. $y = \frac{2x+1}{x+2}$ (1, 1)
2. $y = \frac{x+3}{x+1}$ (0, 3)
Sketching a specific curve

\[f(x) = \frac{1}{x} \]

- **Domain**: \((\infty, 0) \cup (0, \infty)\)
- **Range**: \((\infty, 0) \cup (0, \infty)\)

→ Find **x** and **y** intercepts
 - no **x**-int \((0 = \frac{1}{x} \rightarrow a \neq 1)\) This means the function never touches the axis
 - no **y**-int \((y = \frac{1}{0} \text{ undefined})\)
→ Vertical Asymptote (What makes the denominator zero)
 \[x = 0 \]

→ Horizontal Asymptote (Follow 3 rules)

Given the rational function \(\frac{a x^n + bx^{n-1} + \ldots}{c x^m + dx^{m-1} + \ldots} \)

1. If \(n < m \)
 Horizontal Asymptote at \(y = 0 \)

2. If \(n = m \)
 Horizontal Asymptote at \(y = \frac{a}{c} \)

3. If \(n > m \)
 Horizontal Asymptote up to College algebra we say it doesn't exist
 In calculus we can find it using limits (if possible)

So our horizontal asymptote for \(\frac{1}{x} \) is \(y = 0 \) \((\frac{1}{x} = \frac{1x^0}{x^1})\)

Another nice trick to sketch a curve is knowing their end behavior.
This means finding where the function is increasing and/or decreasing
Use vertical asymptotes as a "cut off point" (Choose a point before and after the VA and see what is happening to the curve)
Putting everything together

\[f(x) = \frac{1}{x} \]

\[
\begin{array}{c|c}
 x & y \\
-1 & -1 \\
1 & 1 \\
2 & 2 \\
\end{array}
\]

* Checking behavior
 - To the left of vertical asymptote: Choose a couple of points
 \[
 \begin{array}{c|c}
 x & y \\
 -2 & -2 \\
 -1 & -1 \\
 \end{array}
 \]
 - To the right of vertical asymptote: Choose a couple of points
 \[
 \begin{array}{c|c}
 x & y \\
 \frac{1}{2} & \frac{2}{1} \\
 2 & \frac{1}{2} \\
 \end{array}
 \]

\[(x-1)^2 \] Sketch \(f(x) = \frac{x}{x^2 - x + 1} \)

- Domain: \((-\infty, \infty)\)
- Range: \([-\frac{1}{3}, 1]\)
- \(x\) and \(y\) intercepts
 \[
 \begin{array}{c|c}
 x \text{-int} & y \text{-int} \\
 x = 0 & y = 0 \\
 \end{array}
 \]
- Vertical Asymptote
 None
- Horizontal Asymptote
 \(y = 0 \)

* Finding the range
 \[
 y = \frac{x^2}{x^2 - x + 1}
 \]
 * Find inverse
 \[
 x = \frac{y}{y^2 + 1}
 \]
 \[
 x^2 - x y + x - y = 0
 \]
 \[
 x y^2 - x y - y + x = 0
 \]
 \[
 x y^2 - (x + 1) y + x = 0 \Leftrightarrow \text{Treat it as a Quadratic}
 \]
 \[
 y = \frac{(x-1) \pm \sqrt{(-x-1)^2 - 4x(x)}}{2x}
 \]
 \[
 y = \frac{x+1 \pm \sqrt{x^2 + 2x + 1 - 4x^2}}{2x}
 \]
 \[
 y = \frac{x+1 \pm \sqrt{-3x^2 + 2x + 1}}{2x}
 \]
- Find restrictions
 \[
 2x \neq 0 \quad -3x^2 + 2x + 1 \geq 0
 \]
 \[
 x \neq 0 \quad (-3x - 1)(x - 1) \geq 0
 \]

* Behavior
 Use zero as "cut-off point"
 \(x = -\frac{1}{3} \quad x = 1 \)

 Left side below horizontal
 Right side above horizontal
 \(\text{Asymptote} \)
Problems: Sketch the following:

1. \(f(x) = \frac{x - 1}{x} \)

 Hint: (Horizontal Asymptote
 Doesn't exist)

2. \(f(x) = \frac{2x^2}{x^2 + x - 2} \)

Absolute Value Function: It is defined as a distance function

Sketch \(f(x) = \frac{|x-2|}{x-2} \)

Remember: The absolute value of any number is always positive.

Meaning \(|x| = 3 \) for example has two different answers

\(-3 \) and positive \(3 \).

In these cases \(\frac{|x-2|}{x-2} \) means: there is a positive and a negative,
therefore we can write absolute value functions as a piecewise function

\[
F(x) = \begin{cases}
\frac{x-2}{x-2} & x > 0 \\
\frac{-x-2}{x-2} & x < 0
\end{cases}
\]

Simplify \(F(x) = \begin{cases}
1 & x \geq 0 \\
-1 & x < 0
\end{cases} \)

Notice: For the original function \(\frac{|x-2|}{x-2} \)

\(F(x) \) is undefined at \(x = 2 \).

Since this part is canceled out in the process we must exclude this point with an open circle,
as \(x = 2 \) is not part of our domain to begin with.

Problem:

Sketch \(f(x) = \frac{3x - |x|}{x} \)
Limits Roughly speaking we can say a limit is a value of \(f(x) \) as \(x \) approaches a. This value can or cannot be included.

Notice that the \(\lim_{x \to 1} f(x) = 1 \) even though \(x \neq 1 \).

For a limit to exist, it must be approach from both sides.

From Trigonometry recall the \(\sin x \) function.

1. As \(x \) approaches \(\frac{\pi}{2} \), \(f(x) \) approaches 1 (or \(\lim_{x \to \frac{\pi}{2}} \sin x = 1 \)).

2. Find \(\lim_{x \to \pi} \sin x = \)

\[\lim_{x \to \pi} \tan x = \text{DNE} \]

Notice as \(x \to \frac{\pi}{2} \) from the positive side, \(f(x) \) is approaching \(-\infty \) and as \(x \to \frac{\pi}{2} \) from the negative side, \(f(x) \) is approaching \(\infty \).

Since \(f(x) \) is not approaching the same values from both sides of \(\frac{\pi}{2} \), we say the limit does not exist (DNE).
1) Find \(\lim_{x \to \infty} \arctan(x) = \frac{\pi}{2} \)

2) Find a) \(\lim_{x \to 2} \arcsin(x) = \)

b) \(\lim_{x \to 0} \arctan(x) = \)

* Even though \(\frac{\pi}{2} \) is not in the range of \(\arctan(x) \), the limit at \(\frac{\pi}{2} \) exists. As \(x \) approaches infinity (\(x \) gets bigger), the function gets close to \(\frac{\pi}{2} \) but never touches it.

Parametric Equations: Are equations where \(x \) and \(y \) are given in terms of a third variable, \(t \). Each value of \(t \) determines a point \((x,y)\) and by tracing each point we create a curve called a **parametric curve**. (Parametric curves have direction)

Graph and eliminate parameters to find a cartesian equation
\[
x = t^2 - 2t \\
y = t + 1
\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Direction is determined by \(t \). How is \(t \) moving in this case, in the positive direction?
To eliminate the parameter,
\[x = t^2 - 2t \quad y = t + 1 \]

1. Solve for \(t \) in one of the equation (Avoid powers greater than 1)
 \[x = t^2 - 2t \quad y = t + 1 \]
 \[\downarrow \]
 \[t = 1 - y \]

2. Plug into the other equation
 \[x = (1-y)^2 - 2(1-y) \]
 \[x = 1 - 2y + y^2 - 2 + y \]
 \[x = -3 - y + y^2 \]
 \[x = y^2 - y - 3 \]

 Notice how this is in fact a parabola just like the graph from the first part.

Problems: Sketch and eliminate the parameter to find the Cartesian equations of the following:

1. \(x = 3 - 4t \), \(y = 2 - 3t \)

2. \(x = e^t - 1 \), \(y = e^{2t} \)

3. \(x = \sin t \), \(y = \cos t \) (Hint: Use trig properties)
 \[0 < t < \frac{\pi}{2} \]